A Concise Route to (--)-Kainic Acid

Hiroshi Nakagawa, Tsutomu Sugahara, and Kunio Ogasawara*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-8578, Japan konol@mail.cc.tohoku.ac.jp

Received July 25, 2000

ABSTRACT

A concise route to (-)-kainic acid from enantiopure (+)-*cis*-4-carbobenzoxyamino-2-cyclopentenol has been devised by employing concurrent Chugaev *syn*-elimination and intramolecular ene reaction as the key step.

(–)-Kainic acid¹ (1), first isolated with the C4-epimer allokainic acid from the marine algae *Digenea simplex* and used as an anthelmintic in Japan, is the parent member of kainoid amino acids exhibiting excitatory neurotransmitting activity² in the mammalian central nervous system. Since the activity is strongly owed to their *trans*-C2/C3:*cis*-C3/ C4 stereochemistry with 2-carboxy and 3-carboxymethyl functionalities, it is most important to avoid generation of an allokainic-acid type diastereomer having *trans*-C3/C4stereochemistry in the stereocontrolled construction of the kainoid amino acid type molecules.^{3,4} We report here a facile construction of an all-*cis*-substituted pyrrolidine on a cyclopentane framework sharing its C2/C3 stereogenic centers from chiral *cis*-4-carbobenzoxyamino-2-cyclopentenol⁵ (+)-**2** and the diastereoselective conversion of the pyrrolidine

10.1021/ol006377r CCC: \$19.00 © 2000 American Chemical Society Published on Web 09/06/2000

product into (–)-kainic acid (1) unaccompanied with an allotype byproduct (Scheme 1).

The enantiopure starting material *cis*-4-carbobenzoxyamino-2-cyclopentenol (+)-**2** was prepared on the basis of the established procedure by Miller and co-workers⁵ involving hetero-Diels-Alder reaction⁶ and lipase-mediated kinetic resolution. Thus, the racemic alcohol (\pm)-**2** was first prepared in two steps from *N*-carbobenzoxyhydroxylamine by exactly following the original procedure through an azoxabicyclo-[2.2.1]heptane intermediate (\pm)-**3** by concurrent oxidation to an acylnitroso intermediate and its cycloaddition with cyclopentadiene in the same reaction medium, followed by reductive cleavage of the nitrogen-oxygen bond using molybdenum hexacarbonyl. In the lipase-mediated resolution, the Miller group obtained the enantiomerically enriched acetate (-)-**4** with 92% ee in 40% yield under transesteri-

⁽¹⁾ Takemoto, T. Jikken Kagaku Koza 1958, 23, 2081.

⁽²⁾ Hashimoto, K.; Shirahama, H. Trends Org. Chem. 1991, 2, 1 and references therein.

⁽³⁾ Pertinent reviews for the synthesis of the kainoid amino acids, see: (a) Reference 2. (b) Parsons, A. F. *Tetrahedron* **1996**, *52*, 4149. (c) Molony, M. G. *Nat. Prod. Rep.* **1999**, *16*, 485 and previous reports.

⁽⁴⁾ Enantiocontrolled synthesis of (-)-kainic acid reported after ref 3, see: (a) Hanessian, S.; Ninkovic, S. J. Org. Chem 1996, 61, 5418. (b) Kawamura, M.; Ogasawara, K. Heterocycles 1997, 44, 129. (c) Bachi, M. D.; Melman, A. J. Org. Chem. 1997, 62, 1896. (d) Nakada, Y.; Sugahara, T.; Ogasawara, K. Tetrahedron Lett. 1997, 38, 857. (e) Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. Synlett 1997, 275. (f) Rubio, A.; Ezquerra, J.; Escribano, A.; Remuinan, M. J.; Vanquero, J. J. Tetrahedron Lett. 1998, 39, 2171. (g) Cossy, J.; Cases, M.; Pardo, D. G. Synlett 1998, 507 and Tetrahedron 1999, 55, 6153. (h) Cheviliakov, M. V.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 1139. (i) Campbell, A. D.; Raynhan, T. M.; Taylor, R. J. K. Chem Commun. 1999, 245.

⁽⁵⁾ Mulvihill, M. J.; Gage, J. L.; Miller, M. J. J. Org. Chem. 1998, 63, 3357

⁽⁶⁾ Pertinent review for the hetero-Diels-Alder reaction involving a nitroso dienophile, see: (a) Streith, J.; Defoin, A. *Synthesis* **1994**, 1107. (b) Vogt, P. F.; Miller, M. J. *Tetrahedron* 1998, *54*, 1317.

fication conditions in the presence of a lipase of Pseudomonas sp. However, the fate of the unreacted starting material was not mentioned at all. We therefore reinvestigated the lipase-mediated resolution more extensively so as to improve the optical yield of the acetate (-)-4 and to know the fate of the other enantiomer in the racemic starting material (\pm) -2. Among the lipases examined, it was found that clear-cut resolution occurred under transesterification conditions in the presence of an immobilized lipase-on-Celite, Lipase AK (Pseudomonas fluorescens, Amano). Thus, when the racemic alcohol (\pm) -2 was stirred with vinyl acetate in dichloromethane at room temperature for 2 days in the presence of Lipase AK, the highly enantiomerically enriched⁷ (99% ee) acetate (-)-4, mp 85.0-86.0 °C, $[\alpha]^{25}$ _D -8.8 (c 0.6, CHCl₃), was obtained in 49% yield, leaving the enantiopure⁷ (>99% ee) alcohol (-)-2, mp 79-83 °C, $[\alpha]^{27}_{D}$ -60.6 (c 0.5, CHCl₃), in 45% recovery yield.⁸ The acetate (-)-4 gave the alcohol (+)-2, mp 79-82 °C, [α]_D³⁰+60.9 (*c* 0.4, CHCl₃), on alkaline methanolysis (Scheme 2).

To explore further utilization of the resolved products, we examined the conversion of (+)-alcohol (+)-2 into (-)-kainic acid (1) by concurrent Chugaev *syn*-elimination⁹ and intramolecular ene reaction¹⁰ as the key step, though such a combination of reactions in thermolysis conditions has not been reported so far. To install C2-carboxy and C3-carboxymethyl functionalities of (-)-kainic acid (1) without difficulty in the later stage, the compound (+)-2 was transformed to (+)-5, $[\alpha]^{29}_{D}$ +7.0 (*c* 0.7, CHCl₃) (TBSCl, imidazole, DMF), and the olefin functionality was dihydroxylated and protected as the acetonide (+)-6, $[\alpha]^{31}_{D}$ +19.8

(9) Nace, H. R. Org. React. 1962, 12, 57.

(10) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. Engl. **1978**, *17*, 476. (b) Curruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1990; pp 252–264.

(*c* 0.5, CHCl₃). The secondary carbamate of (+)-**6** was next alkylated to give the tertiary prenyl carbamate (-)-**7**, $[\alpha]^{30}_{\rm D}$ -18.4 (*c* 0.6, CHCl₃), after desilylation, which was next transformed into the key xanthate ester (+)-**8**, $[\alpha]_{\rm D}^{31}$ +30.5 (*c* 0.8, CHCl₃), under standard conditions (NaH, CS₂, THF, then MeI, -30 °C). Overall yield of (+)-**8** from (+)-**2** was 58% in six steps (Scheme 3).

To initiate concurrent Chugaev *syn*-elimination and intramolecular ene reaction, (+)-**8** was heated in refluxing diphenyl ether in the presence of sodium hydrogen carbonate.^{11,12} Gratifyingly, the expected concurrent reaction did take place to give the tricyclic product (-)-**10**, $[\alpha]^{31}_{D}$ -8.0 (*c* 1.0, CHCl₃), bearing the trisubstituted pyrrolidine framework in 72% yield as a single diastereomer presumably via the transient 1,6-diene intermediate **9** in this single operation. At this point, though the product (-)-**10** could not be distinguished unambiguously from its diastereomer **11** owing to its presence as the carbamate rotamers, significant NOEs between C2-H and C3-H, C2-H and C4-H, and C3-H and C4-H were observed to support diastereospecific generation of the former product having all-*cis*-configuration (Figure 1). The assigned stereochemistry was consistent with

Figure 1.

the preference of the *exo*-transition state **9a** over the *endo*-transition state **9b** as has been observed in some precedents¹⁰ (Scheme 4).

To confirm the assigned stereochemistry of (-)-10 and to convert (-)-10 into (-)-kainic acid (1), it was transformed first into the known all-*cis*-diester¹³ (+)-12 on the basis of

⁽⁷⁾ Optical purity of the products was determined by HPLC using a column with a chiral stationary phase (CHIRALCEL OD, elution with *i*-PrOH/hexane 20:80 v/v for **4** and *i*-PrOH/hexane 10:90 v/v for **2**).

⁽⁸⁾ **Typical Procedure for the Lipase-Mediated Transesterification.** A suspension of (\pm) -**2** (503 mg, 2.16 mmol), vinyl acetate (0.2 mL, 2.16 mmol), and Lipase AK (100 mg) in dichloromethane (10 mL) was stirred at room temperature for 48 h. After filtration through a Celite pad, the filtrate was evaporated under reduced pressure and chromatographed (silica gel, elution with AcOEt/hexane, 1:4 to 1:1 v/v) to give (-)-4 (293 mg, 49%) and (-)-2 (225 mg, 45%).

the 1,2-glycol functionality installed in the early stage. Thus, after removal of the acetonide protecting group of (–)-**10** under acid-hydrolysis conditions, the resulting diol was sequentially cleaved with sodium periodate and further oxidized with Jones' reagent to give the trisubstituted pyrrolidine diester¹³ (+)-**12**, $[\alpha]^{25}_{D}$ +21.6 (*c* 0.2, CHCl₃) [ref: ¹³ $[\alpha]^{24}_{D}$ +19.3 (*c* 0.8, CHCl₃)], having all-*cis* stereochemistry after treatment with diazomethane. Since we have previously obtained (+)-**12** by employing a different method¹³ and have established its transformation into (–)-kainic acid (**1**) through an α -epimerization, the confirmation of the

stereochemistry of the thermolysis product (-)-10, as well as a formal synthesis of the target amino acid, was achieved at this point. Actually, (+)-12 was epimerized at the C2stereogenic center with the base treatment¹³ to give the *trans*-C2/C3:*cis*-C3/C4 diastereomer (-)-13, $[\alpha]^{29}_{D}$ -21.3 (*c* 0.5, CHCl₃) [ref:¹³ $[\alpha]^{26}_{D}$ -22.5 (*c* 1.0, CHCl₃)], which on alkaline hydrolysis afforded (-)-kainic acid (1), $[\alpha]^{26}_{D}$ -13.5 (*c* 0.5, H₂O) [natural:¹⁴ $[\alpha]^{20}_{D}$ -14 (*c* 1, H₂O)], to complete an alternative enantioselective synthesis. Overall yield of (-)kainic acid (1) was 13% in 13 steps from the enantiopure starting material (+)-2, which was obtained from the racemic precursor (±)-2 in 48% yield by sequential lipase-mediated transesterification and methanolysis (Scheme 5).

In conclusion, we have devised a new synthesis of (-)-kainic acid (1) on the basis of the stereochemical outcome of the thermolysis of the xanthate (+)-8, which produced diastereoselectively all-*cis*-substituted pyrrolidine on the cyclopentane ring by concurrent Chugaev *syn*-elimination and intramolecular ene reaction. In connection with this synthesis, we have also established an excellent lipase-mediated kinetic resolution to give the enantiopure alcohol (+)-2 and its enantiomer.

OL006377R

⁽¹¹⁾ Addition of sodium hydrogen carbonate was found to suppress decomposition of the substrate, cf. Kamikubo, T.; Ogasawara, K. *Chem. Commun.* **1995**, 1951.

⁽¹²⁾ **Typical Procedure for the Thermolysis Reaction.** A mixture of **8** (65.2 mg, 0.14 mmol) and sodium hydrogen carbonate (58 mg, 0.70 mmol) in diphenyl ether (2 mL) was heated in an oil bath at 280 °C for 45 min. After cooling, the mixture was chromatographed (silica gel, elution with AcOEt/hexane, 1:8 v/v) to give (-)-**10** (38.2 mg, 72%), [α]³¹_D -8.0 (*c* 1.0, CHCl₃); IR (film) 1707 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 1.26 (3H, s), 1.44 (3H, s), 1.49 (1H, m), 1.75 (3H, s), 1.83 (1H, dd, J = 14.7, 7.5 Hz), 2.77 (1H, m), 3.14 (1H, m), 3.31 (1H, t, J = 11.1 Hz), 3.74 (1H, br.s), 4.10 (1H, d, J = 6.5 Hz), 4.63 (3H, m), 4.83 (1H, s), 5.14 (2H, m), 7.20-7.50 (5H, m); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 22, 24, 26, 31, 44, 45, 47, 66, 70, 81, 85, 110, 111, 127, 128, 137, 141, 154; mass *m/z* 357 (M⁺), 91 (100%); HRMS calcd for C₂₁H₂₇NO₄ 357.1939, found 357.1920.

⁽¹³⁾ Takano S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 1204.

⁽¹⁴⁾ Murakami, S.; Takemoto, T.; Shimizu, Z. J. Pharm. Soc. Jpn. 1953, 73, 1026.